YOLTDB

New Streaming Data Preview: Topics
January, 2021 (updated February 15, 2021)

Beta release for testing and feedback.
Revision History
10.2
Abstract

The following document describes functionality availablein VoltDB 10.1.1 and later. Thisis a betarelease designed
specifically to solicit feedback. The new capabilities are believed to work as described. However, further testing and
real-world evaluation may identify further changes or improvements needed to optimize the functionality and/or
syntax.

Y our feedback concerning new functionality is critical to improving VoltDB. Please send all comments, questions,
and bug reports to support@voltdb.com.

Streaming Data: Topics

VoltDB lets you stream data to or from individual externa systems using export and import. When you configure
import, data is pulled from the specified import source and passed to a stored procedure for processing. Similarly,
when you configure a stream or table as an export source (using the EXPORT TO TARGET clause), any data written
to the stream or table is automatically pushed to the specified external target. However, there are times you do not
know in advance what systems will need the data or when. There are a so times when more than one system can make
use of the same stream. These are the use cases for topic streams.

VoltDB version 10.1 introduces topics as a beta feature. When you define a topic specifying a stream and a stored
procedure, any data written to the stream is held in a queue that one or more external systems can subscribe to and
pull data from as and when they need it. Each subscribed client has its own cursor into the queued data, or if they are
members of a group, each group of clients shares a cursor.

Note

To simplify development for streaming applications, VoltDB topics are modeled after Apache Kafka topics
and utilize the Kafka consumer and producer interfaces as its client APIs. This gives application developers
the ability to reuse existing Kafka consumers and producers — or utilities that abstract the interface, such as
KafkaConnect — to connect their client applications to VoltDB topics. The following discussion assumes a
basic understanding of Apache Kafka and its interfaces and tools, as described in the Kafka documentation.

Understanding Topics

Topics alow you to integrate both import and export into a single stream. Y ou declare a topic using the CREATE
TOPIC statement.

There are actually two distinct and independent components to a topic: input and output. Y ou declare a topic having
either or both, depending on which clausesyou includein the SQL declaration. For example, you can declare an output-
only topic by specifying the USING STREAM clause but specifying no stored procedure. In this case, any records
written to the associated stream are queued for output and available to any consumers of the topic:

https://kafka.apache.org/intro

New Streaming Data Preview: Topics

CREATE TOPI C USI NG STREAM sessi ons;

If, on the other hand, you include the EXECUTE PROCEDURE clause but not USING STREAM, records written
to the topic by producers invoke the specified procedure passing the message contents (and, optionally, the key) as
arguments:

CREATE TOPI C sessi ons EXECUTE PROCEDURE ProcessSessi ons;

In both cases, before you declare the topic with either the USING STREAM or EXECUTE PROCEDURE the
associated stream and/or stored procedure must already exist in the database.

If you include both the USING STREAM and the EXECUTE PROCEDURE clause, the topic is available for both
input and output. What happens to the data as it passes through VoltDB is up to you. You can simply pass it from
producers to consumers by taking the data received by the input procedure and inserting it into the stream of the same
name. Or the stored procedure can filter, modify, or redirect the content as needed. For example, the following data
definitions create a topic where the input procedure uses an existing table in the database (users) to fill out additional
fields based on the matching username in the incoming records while writing the data to the stream for output:

CREATE TABLE tenpuser (usernane VARCHAR(128) NOT NULL);

CREATE TABLE users (username VARCHAR(128) NOT NULL,
country VARCHAR(32), userrank | NTEGER);

PARTI TI ON TABLE t enpuser on col umm user nane;

PARTI TI ON TABLE users on col unm user nane;

CREATE STREAM sessi ons
PARTI TI ON ON COLUWN user nane (
user nane VARCHAR(128) NOT NULL,
| ogi n TI MESTAMP, country VARCHAR(32), userrank |NTECGER);

CREATE PROCEDURE ProcessSessi ons
PARTI TI ON ON TABLE users COLUMN user name
AS BEG N
I NSERT | NTO t enpuser VALUES(CAST(? AS VARCHAR));
I NSERT | NTO sessi ons SELECT u. user nane,
CAST(? AS TI MESTAMP), u.country, u.userrank
FROM users AS u, tenpuser AS t
VWHERE u. user name=t . user namne;
TRUNCATE TABLE t enpuser;
END;

CREATE TOPI C USI NG STREAM sessi ons EXECUTE PROCEDURE ProcessSessi ons;

Finally, if you want to create a topic that is not processed but simply flows through VoltDB from producers to
consumers, you can define an opaque topic using the CREATE OPAQUE TOPIC statement:

CREATE OPAQUE TOPI C sysmsgs;

Opaque topics are useful if you want to have a single set of brokers for all your topics but only need to analyze and
process some of the data feeds. Opague topics let VoltDB handle the additional topics without requiring the stored
procedure or stream definitions needed for processed topics.

Customizing Topic Behavior

In its simplest form, you define a topic by creating the necessary stored procedure and stream to use for input and
output and then defining the topic itself, referencing the procedure and stream. For example:

New Streaming Data Preview: Topics

CREATE STREAM aucti on_bi ds
PARTI TI ON ON COLUW bid_id
(bid_id INTEGER NOT NULL, user_id | NTEGER, bid DECI MAL);

CREATE PROCEDURE
PARTI TI ON ON auction_bids COLUWN bid_id
FROM CLASS aucti onprocs. Eval uat eBi ds;

CREATE TOPI C USI NG STREAM auct i on_bi ds
EXECUTE PROCEDURE Eval aueBi ds
PRCFI LE bi ds;

The stream must be partitioned and the topic nameisthe same asthe stream name (in thiscase auction_bids). Declaring
thetopic and its stream and/or procedure are the only required elementsfor creating atopic. However, there are several
other attributes you can specify as part of the declaration, using the ALLOW, PROFILE, and PROPERTIES clauses.
Those attributes include:

* Permissions — Specifying which roles users must have to access the topic as consumers
* Retention — Assigning a profile to control the retention policy
» DataFormat — Choosing aformat for the data passed to the external clients

» Keys— Specifying key columns

Permissions

When security is enabled for the database, the external clients must authenticate using a username and password when
they initiate contact with the server. Thevalid usernames and passwords are stored as part of the database configuration
and each user is assigned one or more rolesthat define what actions they are allowed to perform.

VoltDB manages security for topic consumers and producers separately. For producers, the permissions of the stored
procedure named in the EXECUTE PROCEDURE statement control who is alowed to write to the topic. For
consumers, permissions are defined by the ALLOW clause of the CREATE TOPIC statement. In other words, the user
account for consumers must either be assigned an all-inclusive system role, such as ADMIN, or arolethat islisted in
the ALLOW clause of the CREATE TOPIC statement to be able to read data from the topic.

Y ou can specify multiple security rolesinthe ALLOW clause, separated by commas. For example, thefollowing stored
procedure and topic declarations allow users assigned the role "producer” to write to the sessions topic, "subscriber"
to read from the topic, and "manager" to both read and write.

CREATE PROCEDURE
PARTI TI ON ON users COLUMWN user _id
ALLOW pr oducer, nanager
FROM CLASS sessi onprocs. Val i dat eUsers;

CREATE TOPI C USI NG STREAM sessi ons EXECUTE PROCEDURE Val i dat eUsers
ALLOW subscri ber, manager;

The specified roles must be defined in the database configuration before the topic is created.

Profiles

Assigning a profile to the topic is strongly recommended. A profile is not required, but if you want to control the
retention policy for the topic (that is, how long data is available to clients before it is purged) you must specify a

New Streaming Data Preview: Topics

profile. The attributes of the profile itself are defined in the database configuration file, which we will discuss later.
For the sake of example, let's assume the topic is assigned to an existing profile called daily:

CREATE TOPI C USI NG STREAM sessi ons EXECUTE PROCEDURE Val i dat eUser s
PROFI LE dai | y;

Data Format

VoltDB topics are composed of three elements. a timestamp, a record with one or more fields, and an optional
set of keys values. The timestamp is generated automatically when the the record is inserted into the stream. By
default, all of the columns of the stream record are included in the topic record. However, you can use the properties
consuner . val ues and consuner . keys to specify which columns of the stream are included as values in the
record and/or key for the topic sent to consumers.

For single value records and keys, the datais sent in the native Kafka binary format for that datatype. For multi-value
records or keys, VoltDB sends the content as comma-separated values (CSV) in atext string by default. Similarly,
on input from producers, the topic record is interpreted as a single binary format value or a CSV string, depending
on the datatype of the content itself.

You can control what format is used to send and receive the topic data using the PROPERTIES clause. The topic
properties provide for maximum flexibility, allowing you to specify individual formats for input versus output, the
topic message versus the keys, etc. In most cases you will want to have the same format for both input and output,
which you can specify usingthet opi c. f or mat property and specifying one of the supported formats (AVRO, CSV,
or JSON). Y ou can replace "topic" with either "consumer" or "producer” to pick the format specifically for output or
input, respectively. Or you can add the suffix "value" or "keys" to pick aformat for the data content versus the keys.

For example, the following declaration creates the topic content for both input and output as AV RO rather than CSV
format:

CREATE TOPI C USI NG STREAM sessi ons EXECUTE PROCEDURE Val i dat eUsers
PROPERTI ES (topic. format=avro);

When using AV RO format, you must also have access to an AVRO schema registry, which is where VoltDB stores
the schema for AVRO-formatted topics. The URL for the registry is specified in the database configuration file, as
described in the section called “ Configuring the Subscription Service on the Database Server”.

Topic Messages and Keys

Apache Kafka can use one or more fields as keys to partition the records to different brokers. VVoltDB lets you select
columns from the stream to declare as keysfor the topic by specifying them intheconsuner . keys property. Since
Kafka keys are associated with partitioning and VoltDB topics are partitioned by the partitioning column, it is best to
always include the partitioning column when you specify topic keys. Separate multiple column names with commas.
For example:

CREATE TOPI C USI NG STREAM sessi ons
PROPERTI ES (consumer. keys="user _id,login_id);

By default, VoltDB includes all columns from the stream in the topic message. So if the topic has one or more keys,
those valueswill berepeated: onceinthekey and oncein thetopic messageitself. If you want to exclude the key values
from the topic message, you can explicitly select which columnsto use in the topic's message and in what order using
theconsuner . val ues property. For example, the following declaration excludes the keys from the message itself.

CREATE TOPI C USI NG STREAM sessi ons
PROPERTI ES (consumer. keys="user_id,login_id,
consumer . val ues="logi n_tine,i p_address'

)

New Streaming Data Preview: Topics

Because VoltDB cannot control what datais sent by client producers, the structure of the data is handled differently
for output and input. On input, VoltDB interprets the layout of the message fields and the key at runtime based on
the data it receives from the producer.

Only one key field is allowed for input. By default, the key is not passed to the specified stored procedure; only the
message fields of the topic are passed as parameters to the stored procedure. If you want to include the key in the list
of parameters to the stored procedure, you can set the property pr oducer . par anet er s. i ncl udeKey to true
and the key will be included as the partitioning parameter for the procedure. For example:

CREATE TOPI C USI NG STREAM sessi ons
PROPERTI ES (consunmer . keys=user _i d,
consuner. val ues="login_id,login_tinme,ip_address',
producer . paraneters.incl udeKey=true

):
Configuring Topic Profiles

The next step is to configure the topics in the database configuration file. First, add the <t opi cs> element to the
database configuration;

<depl oynent >

[..]

<t opi cs enabl ed="true">
</t opics>
</ depl oynment >

Theenabl ed="t r ue" attributeisoptional since, by default, topics are enabled whenever the configuration includes
a <topic> element. Enabling the topics ensures that the topic port (9092 by default) is open and both consumers and
producers can access the topics defined in the database. If the <topics> element is not included, topics are disabled,
and the port is closed and the subscription service is not accessible.

Youcanusetheenabl ed attributeto explicitly enable or disablethe use of topics. Notethat evenif topicsaredisabled,
the queues associated with topics created for output (that is, with the USING STREAM clause) still exist and any data
inserted into the stream will become avail able to consumers as soon astopics are re-enabled by a configuration update.

Within the <topics> element you can define profiles and associated retention policies which specify when to delete
data based either on time or size. For atime-based retention policy, you specify how long the datais kept (in hours,
days, weeks, etc) before it is deleted. For a size-based retention policy, you specify a maximum amount of data that
will be kept before the oldest datais deleted.

Itisagood ideato assign profiles for every topic so you can control how long datais retained. Multiple topics can be
assigned the same profile, if you want to manage their retention policy asagroup. Or you can assign topicsto separate
profilesif you want more refined control.

The profile itself and its retention policy are defined within the <topics> and <profiles> elements. For example, to
define the daily profile used in the previous examples, the configuration file might look like this:

<depl oynent >

[..]

<t opi cs enabl ed="true">
<profil es>

New Streaming Data Preview: Topics

<profile name="daily">
<retention policy="time" |imt="1dy"/>
</profile>
</profil es>
</t opics>

</ depl oyment >

In this example, the policy type is set to time and the limit is set to one day ("1dy"). The alowable policy types are
time and size. The allowable units for each type of policy are listed in the following table.

Time-Based Policy Size-Based Policy
e mn— minutes * mb — megabytes
e hr— hours * gb— gigabytes

e dy —days

o wk — weeks

mo — months

e yr—years

Minimum value = 1 minute Minimum value = 64 megabytes

Warning

Be sureif you specify aprofile in the CREATE TOPIC statement to also define that profile and its retention
policy inthe configurationfile. Thereisadefault policy for topicsthat are not assigned to profiles. By defaullt,
data for a profile-less topic is kept for seven days. However, if you do assign a profile but do not define it,
the topic has no retention policy and data is kept indefinitely, which can rapidly fill up and exhaust available
disk space.

Configuring the Subscription Service on the Database Server

In addition to defining the profiles and retention policies, the configuration file lets you control other aspects of the
operation and performance of the server(s). Y ou can specify basic functions, such aswhich port number external clients
use to subscribe and publish to the topics. By default the subscriber port is 9092. Y ou can specify an different port as
aproperty in the configuration file using the <properties> subelement of topics. For example, the following example
sets the port number to 9999.

<t opi cs enabl ed="true">
<properties>
<property nane="port">9999</ property>
</ properties>
<profil es>
<profile name="dail y">
<retention policy="tinme" |imt="1dy"/>
</profile>
</profiles>
</topics>

Alternately you can set the port number on the voltdb start command using the - - t opi csport argument. If both
are specified, the command line argument takes precedence.

New Streaming Data Preview: Topics

Y ou can also specify athread pool for processing the topics. By default, VoltDB uses the default export thread pool to
process outbound topics. If you have both export queues and topics, you may want to separate the thread pools. Or if
you have multiple consumers accessing topics simultaneously, you may want to increase the number of threads used
so client requests are processed concurrently. Y ou alter the pool size by defining a named thread pool then assigning
that pool name as a topics attribute. For example, the following configuration uses ten threads to process topics:

<t hr eadpool s>
<pool name="topi ct hreads" size="10"/>
<t hr eadpool s>

<t opi cs enabl ed="true" threadpool ="t opi ct hreads" >

[.. .]

</topics>

If you are using AVRO format for any of your topics, you must also specify the URL of an AVRO schema registry
where VoltDB can store the schema for each AVRO topic. Y ou specify the registry in the <avro> element, separate
from the <topic> element. Y ou can optionally specify a name space for your schemaand a prefix for the topic names
as well. For example, if your registry is http://avro.local.lan/ and you want to use the name space mydb.voltdb, the
VoltDB configuration file might look like the following:

<depl oynent >

[..]

<avro registry="http://avro.local.lan/" namespace="nydb. vol tdb"/>
<t opi cs enabl ed="true">
[.. .1
</topics>
</ depl oynent >

Managing the Topic Queues

Managing topics at runtime is a process of balancing the tradeoffs between extended availability (how long data is
availableto clients) and server resources (how much disk spaceis consumed by the topic queues). Whether you define
the retention policy by time or size, it is agood idea to monitor both aspects of the topic to ensure effective usage.

You can see how much space is being consumed and how long data is being retained using the @Statistics system
procedure with the TOPIC selector. The statistics for topics includes columns for the offset and timestamp of the first
and last row of data in the queue for each topic in each partition. It also includes the total number of bytes for each
aswell.

By monitoring the timestamp of the first row you can determine, in general, how long data stays in the queue if you
are using a size-based retention plan. Otherwise, you can use the sum of the total byte counts for atopic to determine
how much space is consumed by a topic with atime-based retention policy.

By increasing or decreasing the size limit for a sized-based policy you directly control the space consumed, but you
also affect how long the dataiis kept. Similarly, by increasing or decreasing the time limit for atime-based policy you
can manage how much space the queue takes up on disk. Adjustments can be made by updating the definition of the
topic's profile in the database configuration. For example, if the seven day weekly retention policy is taking up too
much space, it can be adjusted to five days with the following definition in the configuration file and applying it to
the running database using the voltadmin update command:

<profil es>

New Streaming Data Preview: Topics

<profile name="weekl y">
<retention policy="time" |imt="5dy"/>
</profile>
</profil es>

Known Limitations for the Beta Preview

The following are the known limitations to the preview of VoltDB topics.
1.1. VoltDB usesafixed 2MB buffer for topics

Kafka clients may specify a minimum and/or maximum buffer size for fetching topic data. However, VoltDB
uses afixed 2MB buffer, even if the client specifies alower maximum buffer size. Clients should be aware of
this limitation and be prepared to handle the larger data load.

1.2. Using INSERT INTO SELECT to write data into a topic stream does not always succeed

Using INSERT INTO SELECT to insert data into a topic stream can produce unexpected results. The datais
not always inserted into the queue in the correct order.

1.3. VoltDB 10.1.2 Enhancements

Support for JSON format topics and keys was added in VoItDB release V10.1.2 and is not available in the
earlier 10.1.1.

Reference Documents

The following is aworking draft of the reference documentation for the CREATE TOPIC statement.

New Streaming Data Preview: Topics

CREATE TOPIC

CREATE TOPIC — Creates atopic and corresponding flow control for the database.

Syntax

CREATE TOPIC [USING STREAM] topic-name
[EXECUTE PROCEDURE procedure-name]
[ALLOW role-name]

[PROFILE profile-name]
[PROPERTIES (property-name=value [,...])]

CREATE OPAQUE TOPIC topic-name [PARTITIONED]
[ALLOW role-name]
[PROFILE profile-name]

Description

The CREATE TOPIC statement defines atopic, apipeline for streaming data through VoltDB. Topics use the Apache
Kafkaprotocolsfor producing (input) and consuming (output) thedata. The EXECUTE PROCEDURE clause specifies
the stored procedure that receives the inbound data and the USING STREAM clause specifies that a stream — with
the same name as the topic — is used to queue the outbound data. VVoltDB topics operate just like Kafka topics, with
the database nodes acting as Kafka brokers. However, unlike Kafka, VoltDB topics also have the ability to analyze,
act on, or even modify the data as it passes through.

Stored Proc gL Stream
Insert

Kafka Kafka
Producer :> — :> Consumer

VoItDB

As the preceding diagram shows, data submitted to the topic from a Kafka producer (either using the Kafka API or
using atool such as Kafka Connect) is passed to the stored procedure, which then interprets and operates on the data
before passing it a ong to the stream through standard VoltDB INSERT semantics. Note that the named procedure and
stream must exist prior to declaring the topic. In other words, you must declare the stored procedure and/or stream
before issuing a CREATE TOPIC statement with the USING STREAM and EXECUTE PROCEDURE clauses. For
exampl e, the following statements decl are the necessary stored procedure and stream before creating the topic eventlog
that uses them:

CREATE STREAM event | og
PARTI TI ON ON COLUWN e_ti ne
(e_time TIMESTAVP NOT NULL,
e_type I NTEGER NOT NULL,
e_nmsg VARCHAR(256)
)
CREATE PROCEDURE
PARTI TI ON ON TABLE eventl og COLUW e_tine
FROM CLASS nyconpany. myprocs. processEvent;

New Streaming Data Preview: Topics

CREATE TOPI C USI NG STREAM event Log
EXECUTE PROCEDURE processEvent;

Case Senditivity

Thenames of Kafkatopicsare case-sensitive, and so are Vol tDB topics. That meansthat the name of thetopic,
like the names of stored procedures, matches exactly how you enter it in the CREATE TOPIC statement.
So in the previous example, all lowercase except for the letter "L". However, streams, like tables, are case
insensitive. So the topic "eventLog" is matched to any stream with the same spelling, regardless of case.

In other words, any references to the topic, such as external access from Kafka producers and consumers,
must spell the name exactly matching the case in the CREATE TOPIC statement. But internal references to
the output stream in INSERT statements are case insensitive.

Clauses to the command let you manage the queue associated with the topic, as well as its structure and format. The
clauses are summarised here and explained in more detail in the following sections.

ALLOW clause

PROFILE clause

PROPERTIES clause

Specifies user roles that can read from (consume) the topic from outside VoltDB. The
ALLOW clause uses the same semantics as the ALLOW clause for stored procedures, in
that only users with the specified role(s) are allowed to access the topic for read access.
Note that the permission to write to the topic from an external topic producer is controlled
by the ALLOW cause on the stored procedure named in the EXECUTE PROCEDURE
clause, not by the ALLOW clause on the topic itself.

Associates the topic with a profile, defined in the database configuration file, that defines
the retention policy and other attributes of the output queue.

Specifiesproperties defining the structure and format of thetopic. Theunderlying structure
of the data within VoltDB is defined by the stream identified in the USING STREAM
clause. However, the structure and format of the actual topic message sent as output by
VoltDB, and any keys associated with the message, are defined through properties in
the PROPERTIES clause. Properties also let you define how incoming messages sent by
Kafka producers are interpreted.

Full, Partial, and Opaque Topics

VoltDB does, in fact, support four different types of topics, depending on whether the topic isafull, partial, or opague

topic:

A fully processed topic as described above, is a pipeline that supports both input and output and passes through a
stored procedure. Thisis defined using both the USING STREAM and EXECUTE PROCEDURE clauses.

Producer

—>

checkEvent event Logs

Insert

:> Consumer

CREATE TOPIC USING STREAM eventLogs
EXECUTE PROCEDURE checkEwvent;

* Aninput-only topic only providesfor input from Kafka producers. Y ou define an input-only topic by including the
EXECUTE PROCEDURE clause, without the USING STREAM clause.

10

New Streaming Data Preview: Topics

Producer |::>
[=] vent

CREATE TOPIC eventLogs
EXECUTE PROCEDURE checkEvent;

» An output-only topic only provides for output to Kafka consumers but can be written to by VoltDB INSERT
statements. Y ou define an output-only topic by including the USING STREAM clause, without the EXECUTE
PROCEDURE clause.

::> Consumer

eventLogs

CREATE TOPIC USING STREAM eventLogs;

» An opaque topic supports input and output but provides for no processing or interpretation. Y ou define an opaque
topic using the CREATE OPAQUE TOPIC statement, as described in the section called “ Using Opague Topics'.

Producer Consumer

CREATE OPAQUE TOPIC eventLogs;

Defining the Topic Structure and Format (Properties)

By default, the structure of the stream named in the USING STREAM clause defines the structure of the topic message
sent to consumers. That is, the message fields match the stream columnsin type and order. However, VVoltDB cannot
enforcethe structure or the format of the messagesthat producers send asinput. Asaresult, for input VoltDB interprets
the structure from the actual message itself, based on the data format you specify (Avro, CSV, or JSON), then submits
the fields as arguments to the stored procedure call.

In other words, the structure and formatting of messages are handled differently for input versus output. Each can be
configured in detail, either separately or together, through the PROPERTIES clause. There are three main aspects of
the topic that can be configured:

» The structure of the message (the number, order, and datatype of the fields)
e Thekey or keys associated with the message
» Theformat of the message and/or its keys (CSV or AVRO)

By default, the data for output is formatted either in the native Kafka binary format for single values or as comma-
separated values (CSV) for multiple fields. Similarly, messages received from producers are assumed to be in CSV
format.

For output, the default is that all of the columns of the stream, in the order specified, make up the topic message and
there is no key. For input, the message is evaluated (based on the specified format) to identify the individual fields,
and if thereisakey, it is assumed to be asingle field in the Kafka binary format.

11

New Streaming Data Preview: Topics

Y ou can change the default structure and format of the messages for either or both input and output. For example, you
can specify which columns to include in the message for output and which to use as the key, by specifying property
names and values as a comma-separated list in the PROPERTIES clause. The following topic declaration specifies
that the format is CSV, the message includes only three columns from the stream, and a fourth column (not included

in the message) isthe key:

CREATE TOPI C USI NG STREAM | ogi ns EXECUTE PROCEDURE trackUsers

PROPERTI ES(t opi c. f or mat =csv,

consumer . val ues="1ogi n_tine, i paddr,|ocation',

consurmer . keys=useri d);

Table 1, “Properties of the CREATE TOPIC Statement” describes all of the valid properties for the PROPERTIES
clause, including their default values. The property names are listed in mixed case for readability. However, the

property names are not case sensitive.

Table 1. Properties of the CREATE TOPIC Statement

Format Property Default Description
consumer.format={ AVRO|CSV[JSON} |CSV Format of the topic message and keys sent to consumers.
consumer.format.values={ AVRO|CSV| |CSV Format of the topic message sent to consumers.
JSON}
consumer.format.keys={ AVRO|CSV/| csv Format of the topic keys sent to consumers.

JSON}

producer.format={ AVRO|CSV|JSON} csv Format of the topic message received from producers.

producer.format.values={ AVRO|CSV| csv Format of the topic message received from producers.

JSON} (Synonym for producer.format.)

topic.format={ AVRO|CSV [JSON} csv Format of the topic message and keys for both
consumers and producers.

topic.format.vaues={ AVRO|CSV[JSON} |CSV Format of the topic message for both consumers and
producers.

topic.format.keys={ AVRO|CSV|JSON} |CSV Format of the topic keys sent to consumers.

Structure Property Default Description
consumer.keys=column [,...] no key The stream columns to include in the topic key.
consumer.values= column [,...] al columns | The stream columns to be inserted as valuesinto the

topic message.
producer.parameters.includeK ey=true| false Whether the topic key isincluded as the partitioning
false parameter to the stored procedure call.
Format Configuration Property Default Description
config.avro.timestamp={ unit} MICRO The unit of measure for timestampsin AV RO formatted
SECONDS |fields: MICROSECONDS or MILLISECONDS.
config.avro.geographyPoint={ datatype} |FIXED_ The datatype for GEOGRAPHY _POINT columnsin
BINARY AVRO formatted fields: BINARY, FIXED_BINARY, or
STRING.
config.avro.geography={ datatype} BINARY The datatype for GEOGRAPHY columnsin AVRO
formatted fields: BINARY or STRING.
config.csv.escape={ character} Backslash (\) | The character used to escape the next character in a
quoted string in CSV format.

12

New Streaming Data Preview: Topics

Format Configuration Property Default Description

config.csv.null={ string} Backslash-N | The character(s) representing anull valuein CSV
(\N) format.

config.csv.quote={ character} Double The character used to enclose quoted stringsin CSV
quote (") format.

config.csv.separator={ character} Comma(,) |The character separating the value fields of amessagein

CSV format.

config.csv.ignoreL eadingWhitespace={ |true Whether leading spaces are included in string valuesin

truelfalse} CSV format.

config.csv.awaysQuote={ truejfal se} fase Whether al string values are quotes or only strings with

special characters (such as commas, line breaks, and
quotation marks) in CSV format.

config.json.schema={ EMBEDDED| NONE Whether the JSON representation contains an property

NONE} named "schema' embedded within it or not. If
embedded, the schema property describes the layout of
the object.

Defining the Retention Policy (PROFILE)

Unlike export, where the connector pushes each record to a single "target”, topics are queued where one or more
consumers pull the records as needed. |n export, records are del eted from the queue as soon as the target acknowledges
receipt. With topics there is no specific event that determines that a record is no longer needed, so you must define a
retention policy where records expire and are deleted based on some other triggering event.

Y ou specify the retention policy, based either on the age of the records or the size of the queue, in the configuration file
as part of atopic profile. Y ou then associate a topic with a specific profile using the PROFILE clause. For example,
the following topic declaration associates the |ogins topic with the weekly profile:

CREATE TOPI C USI NG STREAM | ogi ns EXECUTE PROCEDURE trackUser s
PROFI LE weekl y;

Itisagood ideato assign profiles for every topic so you can control how long datais retained. Multiple topics can be
assigned the same profile, if you want to manage their retention policy asagroup. Or you can assign topicsto separate
profilesif you need more refined control.

The profile itself and its retention policy are defined within the <topics> and <profiles> elements. For example, to
define both a daily and a weekly profile, the configuration file might look something like this:

<t opi cs enabl ed="true">
<profil es>
<profile nane="daily"
<retention policy="time" limt="1dy"/>
</profile>
<profile name="weekly">
<retention policy="time" limt="1wk"/>
</profile>
</profil es>
</t opics>

In this example, the policy type is set to time and the limit is set to either one day ("1dy") or one week ("1wk"). The
allowable palicy types are time and size. The allowable units for each type of policy are listed in the following table.

13

New Streaming Data Preview: Topics

Time-Based Policy Size-Based Policy
e mMn— minutes ¢ mb — megabytes
e hr— hours e gb— gigabytes

o dy — days

o wk — weeks

* mo — months

e yr—yeas

Minimum value = 1 minute Minimum value = 64 megabytes

Warning

Be sure if you specify a profile in the CREATE TOPICS USING STREAM statement to also define that
profileanditsretention policy inthe configurationfile. Thereisadefault policy for topicsthat are not assigned
to profiles. By default, data for a topic without a profile is kept for seven days. However, if you do assign a
profile but do not define it, the topic has no retention policy and data is kept indefinitely, which can rapidly
fill up and exhaust available disk space.

Receiving Topic Records From Producers

When the CREATE TOPIC statement includes the EXECUTE PROCEDURE clause, the topic is available for input
from Kafka producers. Records sent to the topic are decomposed to their component fields (based on the specified
data format) and then passed as arguments to the named stored procedure. If there is akey for the topic, the key value
is added as the partitioning parameter.

Note that you cannot specify a data format for the key key associated with records received from producers, whereas
you can define a separate format for keys sent to consumers. This is because, although Kafka allows compound keys
containing multiple values, VoltDB constrains topics received as input to a single key value. This key value is, by
default, not included in the parameters to the stored procedure call, assuming that the key value may very well already
be included as part of the topic record. However, you can explicitly ask to have the key included asthe first parameter
by setting the property pr oducer . par anet er s. i ncl udeKey to true.

Using Opaque Topics

Not all dataneeds analysis. But maintaining separate infrastructure for intelligent processing and unprocessed topicsis
expensive. That iswhy VoltDB providesamechanism for handling unprocessed, or opaque, topicsaswell asprocessed
topics, so you can aggregate all your streaming needs into one set of servers.

Y ou create opaque topics using the CREATE OPAQUE TOPIC statement. The opague topic alows for both input
from producersand output to consumerswithout explicitly declaring an output stream — VoltDB automatically creates
the necessary output queue based on the name you provide. At run time, opaque topics pass all records received from
producers directly to the output topic queue for consumers.

There are no properties associated with opaque topics, since thereis no processing and therefore no settings to tweak.
However, you can and should assign aretention policy for them by assigning a profile. For example:

CREATE OPAQUE TOPIC systemalerts
PRCFI LE dai l y;

14

New Streaming Data Preview: Topics

Examples

The following example demonstrates a decision-making process using VoltDB topics. The example declares two
streams, one stored procedure, and two topics. The first topic, auction_bids, provides for both input and output. The
second topic, rejected_bids, is output only since there is no EXECUTE PROCEDURE clause. The stored procedure,
Eval uateBids, examines the incoming bids on the auction_bids topic and determines whether to pass them through by
inserting them into the auction_bids stream, or to divert them by inserting them into the rejected_bids stream. Note
that both topics use the same profile and therefore the same retention policy.

CREATE STREAM aucti on_bi ds
PARTI TI ON ON COLUWN bid_id
(bid_id INTEGER NOT NULL, user_id |INTEGER, bid DECI MAL);
CREATE STREAM rej ect ed_bi ds
PARTI TI ON ON COLUW bid_id
(bid_id INTEGER NOT NULL, user_id |INTEGER, bid DECI MAL);
CREATE PROCEDURE
PARTI TI ON ON auction_bids COLUWN bid_id
FROM CLASS aucti onprocs. Eval uat eBi ds;
CREATE TOPI C USI NG STREAM aucti on_bi ds
EXECUTE PROCEDURE Eval uat eBi ds
PROFI LE bi ds;
CREATE TOPI C USI NG STREAM r ej ect ed_bi ds
PROFI LE bi ds;

The next example declares two topics — one for processing user session logins and another for handling expired
sessions. New sessions need to be validated, but expired sessions can simply be passed through the consumers asiis.
This demonstrates how opaque topics allow VoltDB to manage all of your streaming needs, add intelligence to the
pipeline, while reducing the infrastructure needed to support your business goals.

CREATE TOPI C USI NG STREAM new _sessi ons
EXECUTE PROCEDURE Val i dat eUser
PROFI LE sessi ons;
CREATE OPAQUE TOPI C expi red_sessi ons
PROFI LE sessi ons;

15

New Streaming Data Preview: Topics

ALTER TOPIC

ALTER TOPIC — Modifies an existing topic definition.

Syntax

ALTER TOPIC topic-name ADD PROPERTIES (property-name=value [,...])
ALTER TOPIC topic-name ALTER PROPERTIES (property-name=value [,...])

ALTER TOPIC topic-name DROP PROPERTIES (property-name [,...])

Description

The ALTER TOPIC statement modifiesthe set of propertiesassociated with the specified topic. Therearethreevariants
of the ALTER TOPIC statement: ALTER TOPIC... ADD, ALTER TOPIC... DROP, and ALTER TOPIC... ALTER,
In each case the specified properties are added, dropped, or altered. Other existing properties of the topic remain
unchanged. So, for example, if the CREATE TOPIC statement defined values for three properties a, b, and ¢, then
executing the statement ALTER TOPI C t opi c- nane ADD PROPERTI ES (d=val ue) wouldresultinthetopic
having four explicit properties: a, b, ¢, and d. Similarly, if you then execute the statement ALTER TOPI C t opi c-
nane DROP PROPERTI ES (a, b) therewill betwo explicit properties remaining: c and d.

If aproperty isdropped and thereis a default value for the property, the default value is used for all subsequent topic
records until a subsequent ALTER TOPIC statement changesit.

Example

The following example adds two properties, specifying the column sku_num as the key for the topic and AVRO as
the data format.

ALTER TOPI C products ADD PROPERTI ES (consuner. keys=sku_num topic. format =avro);
The second example dropsthetopic.format property added previously, causing the format to revert to the default, CSV.

ALTER TOPI C products DROP PROPERTIES (topic.format);

16

	New Streaming Data Preview: Topics
	Streaming Data: Topics
	Understanding Topics
	Customizing Topic Behavior
	Permissions
	Profiles
	Data Format
	Topic Messages and Keys

	Configuring Topic Profiles
	Configuring the Subscription Service on the Database Server

	Managing the Topic Queues
	Known Limitations for the Beta Preview
	Reference Documents
	CREATE TOPIC
	ALTER TOPIC

