
Metrics Preview
July, 2023

Beta release for testing and feedback.

Revision History
12.3.0

Abstract

The following document describes functionality available in VoltDB 12.3.0 and later. This is a beta release designed
specifically to solicit feedback. The new capabilities are believed to work as described. However, further testing and
real-world evaluation may identify further changes or improvements needed to optimize the functionality and/or
syntax.

Your feedback concerning new functionality is critical to improving VoltDB. Please send all comments, questions,
and bug reports to betasupport@voltactivedata.com.

Metrics

VoltDB V12.3 includes the beta release of a new reporting system aimed at providing a simpler, more consistent
interface for information about the database, its status, and performance. The new system has two primary goals:

• Provide a better, more seamless integration with the industry-standard Prometheus/Grafana monitoring and reporting
ecosystem.

• Rationalize, and ultimately replace, multiple distinct reporting interfaces in the Volt product.

The initial goal for the new system is to replace the current external Prometheus agent, which will be deprecated. The
new metrics system provides a number of advantages over the existing Prometheus agent. Although they both offer
Prometheus-compliant interfaces the new metrics system is built into the server, so the metrics API starts and stops
with the database unlike the external agent. The new system also eliminates the overhead associated with the external
agent making multiple calls to the database to retrieve and restructure statistics in Prometheus format. Finally, the
built-in services reports data on a per-server basis, which is more consistent with the way other cluster services report
information to Prometheus. It also reduces the intra-cluster coordination needed to report cluster-wide statistics.

Using the New Metrics System

To use the new metrics system, you must first enable it in the configuration file when initializing the database. You
do this by adding the <metrics> element to the configuration, like so:

<deployment>

Metrics Preview

 <cluster kfactor="1"/>
 <metrics enabled="true"/>
</deployment>

Once enabled, metrics can be retrieved from each server in the cluster through the metrics port, which defaults to
11781. (You can specify an alternate port and/or network interface using the --metrics qualifier on the voltdb start
command.)

On Kubernetes, metrics are enabled by setting the appropriate per pod metrics properties. For example:

--set cluster.config.deployment.metrics.enabled=true \
--set cluster.serviceSpec.perpod.metrics.enabled=true \
--set cluster.serviceSpec.service.metrics.type=ClusterIP

One advantage of using the metrics system with Prometheus on Kubernetes is that the new metrics ports are identified
automatically and by the Prometheus infrastructure. On other platforms, you should add the metrics port as a data
source to your Prometheus server's configuration.

For custom metrics collection and reporting, there is also a Volt native system procedure for retrieving the same
information that is available from the metrics port. The @Metrics system procedure (described below) returns the
same information formatted in a sequence of VoltTable structures.

2

Metrics Preview

Known Limitations for the Beta Release

The following are the known limitations to this preview of metrics.

1.1. New @Metrics system procedure

The new @Metrics system procedure (described below) is still under development and the order, number, and/
or names of the columns and rows may change before the final availability for production use.

Reference Documents

The following reference documentation describes the @Metrics system procedure.

3

Metrics Preview

@Metrics
@Metrics — Returns information about the performance and current status of the database server

Syntax
@Metrics

Description
The @Metrics system procedure returns information about the status and performance of the database server. This
information is only available if metrics are enabled when the database is started by including the <metrics en-
abled="true"> element in the configuration file.

Metrics are normally accessed through the metrics port via a network request. The format and request method when
using the metrics port are compatible with Prometheus, an industry standard metrics collection and reporting system.
The @Metrics system procedure returns the same information, however, structured as a series of VoltTables, appro-
priate for a client application.

Return Values
The procedure returns one VoltTable summarizing the amount of data being returned, then a series of VoltTables
grouping the metrics by topic, with specific columns and number of rows dependent on the information required by
each topic.

Example
The following program example filters the results by the metric name MEMORY_TUPLEDATA and prints out the
total number of bytes currently used to store tuples.

try {
 VoltTable[] results = client.callProcedure("@Metrics").getResults();
 String metric = "MEMORY_TUPLEDATA";
 int count = 0;
 int tables = 0;
 for (VoltTable node : results) {
 if (tables++ ==1) continue; // Skip summary row
 node.resetRowPosition();
 while(node.advanceRow()) {
 if (node.getString("NAME").equals(metric)) {
 count += node.getLong("VALUE");
 }
 }
 System.out.println("Tuple Memory in use: " + String.valueOf(count));
} catch (Exception e) { e.printStackTrace(); }

4

	Metrics Preview
	Metrics
	Using the New Metrics System
	Known Limitations for the Beta Release
	Reference Documents
	@Metrics

